Keyboard 1

Example 41

Keyboard

In this example we will interface the PS/2 port to a PS/2 keyboard, also known as
an AT keyboard. The example will not apply to the newer USB keyboards, or to the
older, obsolete XT keyboard. Keyboards contain their own microprocessors that
continually scan the keys and then send the resulting key pressings to the host — in our
case through the PS/2 port.

For a PS/2 keyboard the key pressed is identified by a scan code. This code is
associated with a physical key. Thus, the left shift key and the right shift key have
different scan codes. When you press a key the Make scan code is sent to the PS/2 port.
When you release the key the Break scan code is sent to the PS/2 port. The Make and
Break scan codes for all the keys on a PS/2 keyboard are shown in Table 7.1.

For all of the letters and digits the Make scan code is a single byte and the Break
scan code is the same byte preceded by the hex byte FO. Some of the other keys have a
2-byte Make scan code in which the first byte is hex EQ. The corresponding Break scan
code has three bytes starting with hex EO. Note that the PrntScrn and Pause keys are
special with a 4-byte and 8-byte Make code respectively.

The scan codes have no relationship to the ASCII codes of the key characters.
Recall that the ASCII code for an upper-case letter is different from the ASCII code of a
lower-case letter. To tell if you are typing an upper-case or lower-case letter you would
need to check if you are pressing the shift key (or if you have pressed the CapsLock key)
and then press the letter key before you release the shift key. For example, if you want to
type an upper-case A you would press the left shift key, press the key A, release the key
A, and release the left shift key. From Table 7.1 this would send the following bytes to

the PS/2 port.
12 1C FO 1C FO 12

When you hold a key down the typematic feature of the keyboard will, after a
typematic delay of 0.25 — 1.00 seconds, continue to send out the Make scan code at a
typematic rate of 2 — 30 characters per second. The typematic delay and rate can be
changed by sending the OxF3 command to the keyboard followed by a byte than encodes
the new delay and rate.

In this example we will only read data from the keyboard and not send the
keyboard any commands. Therefore, we don't need the tri-state buffers in Fig. 7.3. We
will, however, need to filter the clock and data signals coming from the keyboard. The
filtered data signal, PS2Df, will be shifted into two 11-bit words as shown in Fig. 7.5.
Note that after shifting in these two words the first byte shifted in will be in shift2(8:1)
and the second byte shifted in will be in shift1(8:1).

Listing 7.2 shows the VHDL code for interfacing to the keyboard. The output
xkey(15:0) will contain the two bytes shifted in when a key is pressed on the keyboard.

Example 41

Listing 7.3 is the VHDL program for the top-level design that will display the scan codes
of the keys pressed on the 7-segment display.

Table 7.1 Keyboard Scan Codes

Key | Make | Break Key Make Break Key Make Break
A 1C FO,1C ? OE FO,OE F1 05 F0,05
B 32 FO,32 - 4E FO,4E F2 06 FO0,06
C 21 FO,21 = 55 FO,55 F3 04 FO,04
D 23 F0,23 \ 5D FO,5D F4 ocC FO,0C
E 24 FO,24 BKSP 66 FO0,66 F5 03 F0,03
F 2B FO,2B SPACE 29 FO0,29 F6 OB FO,0B
G 34 FO,34 TAB oD FO,0D F7 83 F0,83
H 33 F0,33 CAPS 58 F0,58 F8 OA FO,0A
| 43 FO0,43 L Shift 12 FO,12 F9 01 FO,01
J 3B FO,3B R Shift 59 F0,59 F10 09 FO0,09
K 42 FO,42 L Ctrl 14 FO,14 F11 78 FO,78
L 4B FO,4B R Ctrl EO,14 | EO,F0,14 F12 07 FO,07
M 3A FO,3A L Alt 11 FO,11 Num 77 FO,77
N 31 FO,31 R Alt EO,11 EO,F0,11 KP/ EO,4A | EO,FO,4A
) 44 FO,44 L GUI EO, 1F EO,FO,1F KP * 7C FO,7C
P 4D FO,4D R GUI EO,27 EO,FO0,27 KP - 7B FO,7B
Q 15 FO,15 Apps EO, 2F EO,FO,2F KP + 79 FO,79
R 2D FO,2D Enter 5A FO,5A KP EN EO,5A | EO,FO,5A
S 1B FO,1B ESC 76 FO,76 KP. 71 FO,71
T 2C FO,2C Scroll 7E FO,7E KP 0 70 FO,70
U 3C F0,3C Insert EO,70 EO,F0,70 KP 1 69 FO0,69
\% 2A FO,2A Home EO,6C EO,FO0,6C KP 2 72 FO,72
wW 1D FO,1D Page Up EO,7D EO,F0,7D KP 3 7A FO,7A
X 22 FO,22 Page Dn EO,7A | EO,FO,7A KP 4 6B FO,6B
Y 35 F0,35 Delete EO,71 EO,F0,71 KP 5 73 FO,73
Z 1A FO, 1A End EO0,69 EO,F0,69 KP 6 74 FO,74
0 45 FO,45 [54 FO,54 KP 7 6C FO,6C
1 16 FO,16] 5B FO,5B KP 8 75 FO,75
2 1E FO,1E : 4C F0,4C KP 9 7D FO,7D
3 26 FO0,26 ' 52 FO0,52 U Arrow | EO,75 | EO,F0,75
4 25 FO0,25 , 41 FO,41 L Arrow | EO,6B | EO,F0,6B
5 2E FO,2E , 49 F0,49 D Arrow | EO,72 | EO,F0,72
6 36 FO0,36 / 4A FO,4A R Arrow | EO,74 | EO,F0,74
7 3D FO,3D PrntScrn | EO,7C, | EO,FO,7C, Pause | E1,14, None
8 3E FO,3E EO,12 | EO,FO0,12 77,E1,

9 46 FO,46 FO0,14,
FO,77,

Keyboard

8 7 6 5 4 3 2 1 0 0 9 8 7 6 5 4 3 2

10 9
PSZDf—% 1 ‘ P ‘D?‘DG‘DS‘D4‘D3‘D2‘D1‘DO‘ 0 H 1 ‘ P ‘D?‘DG‘DS‘D4‘D3‘D2‘D1‘DO‘ 0‘

shift1(10:0) shift2(10:0)
Figure 7.5 Shifting PS2Df into two bytes

Listing 7.2 keyboard.vhd

-- Example 4la: keyboard
library I1EEE;
use IEEE.STD_LOGIC_1164.all;

entity keyboard is
port(
clk25 - in STD_LOGIC;
clr - in STD_LOGIC;
PS2C : in STD_LOGIC;
PS2D : in STD_LOGIC;
xkey : out STD_LOGIC_VECTOR(15 downto 0)

)
end keyboard;

architecture keyboard of keyboard is

signal PS2Cf, PS2Df: std_logic;

signal ps2c_filter, ps2d_filter: std_logic_vector(7 downto 0);
signal shiftl, shift2: std_logic vector(10 downto 0);

begin

xkey <= shift2(8 downto 1) & shiftl(8 downto 1);

-- Filter for PS2 clock and data
Ffilter: process(clk25, clr)
begin
if clr = "1" then
ps2c_filter <= (others => "0%);
ps2d_filter <= (others => "0%);
PS2Cf <= "1°7;
PS2DF <= "1";
elsif clk25%event and clk25 = "1 then
ps2c_filter(7) <= PS2C;
ps2c_Ffilter(6 downto 0) <= ps2c_filter(7 downto 1);
ps2d_filter(7) <= PS2D;
ps2d_filter(6 downto 0) <= ps2d_filter(7 downto 1);
if ps2c_filter = X"FF" then
PS2CF <= "1";
elsif ps2c_filter = X"00" then
PS2Cf <= "0°%;
end if;
iT ps2d_filter = X"FF'" then
PS2DF <= "1";
elsif ps2d_filter = X"00" then
PS2Df <= "0°%;
end if;
end if;
end process filter;

Example 41

Listing 7.2 (cont.) keyboard.vhd

--Shift Registers used to clock in scan codes from PS2--
shift: process(PS2Cf, clr)
begin
if (clr = "17) then
Shiftl <= (others => "07%);
Shift2 <= (others => "0%);
elsift (PS2Cf*event and PS2Cf = "0") then
Shiftl <= PS2DF & Shiftl(10 downto 1);
Shift2 <= Shiftl1(0) & Shift2(10 downto 1);
end if;
end process shift;

end keyboard;

Listing 7.3 keyboard top.vhd

-— Example 41b: keyboard_ top
library I1EEE;

use IEEE.STD _LOGIC_1164.all;
use work.ps2_components.all;

entity keyboard top is
port(

mclk : in STD_LOGIC;
PS2C: in STD_LOGIC;
PS2D: in STD_LOGIC;
btn : in STD_LOGIC_VECTOR(3 downto 0);
a to g : out STD_LOGIC_VECTOR(6 downto 0);
dp : out STD_LOGIC;
an : out STD_LOGIC_VECTOR(3 downto 0)

)
end keyboard_top;

architecture keyboard_top of keyboard_ top is
signal pclk, clk25, clk190, clr: std_logic;
signal xkey: std_logic_vector(15 downto 0);
begin

clr <= btn(3);

dp <= "17; --— decimal points off

Ul : clkdiv2
port map(mclk => mclk, clr => clr, clk25 => clk25,
clk190 => clk190);

U2 : keyboard
port map(clk25 => clk25, clr => clr, PS2C => PS2C,
PS2D => PS2D, xkey => xkey);

U3 : x7segb
port map(x => xkey, cclk => clk190, clr => clr,
a to g => a to g, an => an);

end keyboard_top

